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Modeling distributed axonal delays in mean-field brain dynamics
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The range of conduction delays between connected neuronal populations is often modeled as a single
discrete delay, assumed to be an effective value averaging over all fiber velocities. This paper shows the effects
of distributed delays on signal propagation. A distribution acts as a linear filter, imposing an upper frequency
cutoff that is inversely proportional to the delay width. Distributed thalamocortical and corticothalamic delays
are incorporated into a physiologically based mean-field model of the cortex and thalamus to illustrate their
effects on the electroencephalogram (EEG). The power spectrum is acutely sensitive to the width of the
thalamocortical delay distribution, and more so than the corticothalamic distribution, because all input signals
must travel along the thalamocortical pathway. This imposes a cutoff frequency above which the spectrum is
overly damped. The positions of spectral peaks in the resting EEG depend primarily on the distribution mean,
with only weak dependences on distribution width. Increasing distribution width increases the stability of fixed
point solutions. A single discrete delay successfully approximates a distribution for frequencies below a cutoff
that is inversely proportional to the delay width, provided that other model parameters are moderately adjusted.
A pair of discrete delays together having the same mean, variance, and skewness as the distribution approxi-
mates the distribution over the same frequency range without needing parameter adjustment. Delay distribu-

tions with large fractional widths are well approximated by low-order differential equations.
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I. INTRODUCTION

Transmission delays are inherent in physical systems and
responsible for rich dynamics. In many neural systems, these
delays are of key importance and cannot be neglected in
modeling. Axonal delays in the brain can be grouped into
two categories: delays within a given structure (such as
within the cortex) and delays between distinct structures
(such as between cortex and thalamus). While numerous
studies have explored the properties of delays within a single
structure [1-10], less attention has been devoted to the de-
lays between structures [9-13], which until now have only
been treated in detail by approximating them as single dis-
crete delays. In this paper we relax this restriction, and ex-
plore the effects of temporally distributed delays between
cortex and thalamus in a physiologically based mean-field
model [8-16]. We concentrate on the temporal aspects of
these delays, so as not to obscure their effects with other
effects due to spatial propagation. For similar reasons, we
also assume a translation-invariant form for intracortical de-
lays, and focus on the linear regime with spatially uniform
parameters; nonlinear effects and spatial inhomogeneities are
straightforward to include, in the same ways as in previous
work [1,2,4-6,8—12,15].

Delays both within and between populations have been
modeled as convolutions over the history of the source ac-
tivity [5,6,10], taking into account the spatiotemporal distri-
bution of delays, although for many applications such an
integral representation is both analytically and numerically
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undesirable. Certain connection topologies enable useful
simplifications. For example, propagation within neuronal
populations has been shown to obey a damped wave equa-
tion to a good approximation [1,2,4,8,9], yielding a conve-
nient differential form in both space and time. In neural net-
works, the mean activity can be described by a purely
temporal convolution [3,7]. The spatial convolution can also
be neglected between structures connected by a one-to-one
spatial mapping, such as occurs between cortex and thalamus
[9-11,13]. This includes the case in which the delay is ap-
proximately independent of position, as has recently been
shown in the mouse thalamocortical pathway [17].

One common simplification to a temporal distribution of
delays is to induce an effective delay via the phase shift of a
simple low-pass filter, which yields ordinary differential
equations (ODEs) for appropriate choices of filter. Another
useful simplification is to replace the delay distribution with
a single discrete delay, resulting in a delay differential equa-
tion (DDE). The conditions under which a distribution of
delays with nonzero width is suitably approximated by a
single discrete delay are yet to be determined. Care must be
taken in general, because the introduction of discrete delays
can destabilize the system [7,18]. As discrete delays are com-
monly used in the literature [9-13,15,19,20], this is an im-
portant point to resolve. We address this issue in the context
of a mean-field corticothalamic model of neuronal activity.

The EEG is a commonly used diagnostic of brain func-
tion, exhibiting spectral peaks at ~10 Hz (termed alpha) and
~20 Hz (termed beta) during healthy resting states [1,4].
There is significant evidence that the positions of these peaks
are determined primarily by the thalamocortical and cortico-
thalamic delays [9,11-13]. How the generation of these
peaks is related to the distribution of physiological delays is
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unknown, and is also relevant to deciding the validity of such
mechanisms, but comparison of the various competing mod-
els for this phenomenon is beyond the scope of this paper.
Additionally, the distribution of human delays is itself only
indirectly inferred, with the only estimates obtained by ex-
trapolation from other mammals such as the cat. The dynam-
ics of the corticothalamic system constrain the allowable de-
lay distributions.

The paper is organized as follows. In Sec. II, we model
distributed delays between distinct neural populations, and
incorporate them into a mean-field model of brain dynamics
[8-16]. In Sec. III, we explore the implications of allowing a
range of thalamocortical and corticothalamic delays on the
EEG spectrum, giving conditions for discrete delays and
ODEs to yield reasonable approximations of delay distribu-
tions.

II. THEORY

In this section, we model distributed delays between dis-
tinct neural populations and incorporate them into the model
of Robinson et al. [8—16]. Section II A shows how distrib-
uted delays linearly filter an input signal, while in Sec. II B
we derive the white-noise driven linear power spectrum for
general distributed thalamocortical and corticothalamic de-
lays, the effects of which we will show in Sec. IIL

A. Distributed delays

In previous work, the transmission delay between two
neuronal populations was modeled as a single discrete delay
in the form ¢,(t—17,,), for input to population a from popu-
lation b with delay 7., [9-16]. Here we generalize the de-
layed transmission to take into account a distribution of de-
lay times [10]. We focus on delays berween populations,
rather than the spatiotemporal delays within a single popula-
tion [5,6,10], in order to treat these delays separately. The
input ¢,,(7) to population a is now a convolution over the
history of population b, given by

o)

YD) = | My (t—1")py(t")dt’, (1)

-0

where M ,,(7) is the normalized distribution of delay times,
and M ,,(1)=0 for <0 ensures that the input is causal. In-
stantaneous connections (i.e., 7,=0) have M, (r—1")=48
—t'), and the discrete delay case is recovered for M ,;,(t—t")
=8(t—1t'—17,,).

Equation (1) linearly filters input ¢,(¢) producing output
,5(f). Rather than evaluate the integral in Eq. (1), we use
the filter’s transfer function, enabling efficient calculation of
the response to a variety of inputs. This is ideally suited to
linear analysis of any model containing Eq. (1), enabling
derivation of the noise-driven linear power spectrum and
stimulus-evoked responses, which are of key interest in elec-
troencephalography. Fourier transforming Eq. (1) gives the
transfer function
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M) = L) )

dp(w) '

where M (), ¥,,(w), and ¢,(w) are the Fourier transforms
of M (1), (1), and ¢,(r), respectively.

Certain choices of M () such that M(w)=R(iw), where
R(iw) is a rational function of iw, allow us to express Eq. (1)
in a linear differential form. For example, if M, (w)
=1/p(iw), where p(iw) is a polynomial in iw of order n, then
a linear differential operator T,,(1)=F'{p(iw)} exists and is
also of order n, such that

Tablﬁab(t) = ¢b(t) . (3)
One distribution with this property is the gamma distribution,

M”
I'(n)

M (1) = e MH(t), 4)

where n, >0 are real parameters, and H(z) is the unit step
function. This distribution has mean (t)=n/u, mode t,=(n
—1)/p, standard deviation Ar=vn/u (which we take to be
the characteristic width), and Fourier transform M ,,(w)=(1
—iw/u)™". Thus M () is of the form 1/p(iw) when n is an
integer, and Eq. (3) becomes

1d\"
(1 +;d_t> ap(t) = Py(1). (5)

Note that by setting n=(7,,/ 5,,)> and u=r,,/d>, in Eq. (4),
we can parametrize the gamma distribution by its mean (r)
=7,, and standard deviation At=0,,. With 7, fixed, in the
limit o,,—0 we have M (w)— e and s, (1) — ¢,(t
—1,,), recovering the discrete delay case again.

An example of a distribution for which we can calculate
the transfer function analytically, but which does not permit
an equivalent differential equation representation, is the
Gaussian distribution truncated at #=0. It has probability
density function

1 (- T)Z}
Mu (t) = ~ ex |:_ H(t)’ (6)
b o\2mA, P 207
where 7, o>0 are parameters, and 1/2<A,=[1

+erf(7/ 0\5)]/2 <1 is a factor correcting for the truncation;
the normalization factor for the full Gaussian is recovered
when Ay— 1. This distribution has mean

o 7
=7+ W eXP(— F) (7)

O\r’27T

standard deviation Ar given by

o 2
(A)*=o0" - o eXP(— ﬁ)(t% (8)

oN&T

and Fourier transform
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1 . o’ T+ iwo”
Mab(w)=gexp ioT— 5 1 +erf 7 .
O |

&)

Note that while M,,(¢) is discontinuous at the origin,
lim,_+M ,;(¢) is small if o<1, i.e., if the distribution is con-
fined sufficiently far from the origin. In this limit the re-
sponse is essentially the same as that of the full Gaussian.
Thus (=7, At=0, and M, (w)=exp(ioT-0c’w?/2) for
small o [for large o, |M,(w)|~1/w instead of |M ()|
~exp(-0”w?/2) for the full Gaussian]. Note that gamma-
and Gaussian-distributed delays are commonly observed in
mammalian brains [21,22].

It is important to determine when one or more discrete
delays are a good approximation to a wide distribution of
delays, because discrete delays are computationally easier to
handle, unless an equivalent low-order ODE exists. For n
discrete delays, the distribution is

M (1) = 2 et = 1), (10)
k=1

with Fourier transform

M () = D) cpel®, (11)
k=1

where 7, are the delays and c; are positive constants satisfy-
ing 2}_,c,=1. For n=2, the distribution has mean (f)=c;7
+¢,7y, and variance (A7)’=c,c,(7— 1)

The transfer function M, (w) describes how propagation
to a distorts the signal from b. Specifically, the magnitude
|M ,(w)] is the frequency-dependent gain of the filter, the
power output |#,,(w)|>=|M ,,(w)|*|p,(w)|* is proportional to
the squared gain, and 7,=dlarg M ,(w)]/dw is the
frequency-dependent group delay. The case of a discrete de-
lay 7, has M,=e'®%b, so that any input signal passes
through with amplitude unchanged and delay 7,=7,,. A pair
of equally weighted delays (¢;=c,=1/2) separated by 20
=|m,—7| has |M(w)|=|cos(wa)|, so M(w)=0 at w=mm/20
for m odd, where signals arriving at delays 7; and 7, are out
of phase. These zeros constrain the range of frequencies that
can propagate from b to a. Note that M, (0)=1, and
|M ,(w)|? falls to |M(w,,)|*=1/2 at w=w,=m/40, where
w,, is the frequency below which more than half of the
power at each w is transmitted. Thus undamped signal propa-
gation in a contiguous band between w=0 and high frequen-
cies requires closely spaced delays. Setting unequal weights
c#c, for 7, and 7, gives |M,(w)|*=1-4cc, sin*(wo),
eliminating the zeros, but the gain is still minimized at these
frequencies. If ¢;c,<1/8, M ,(w)]>>1/2 for all .

For both the gamma and Gaussian distributions, [M ,(w)|*
decreases monotonically and tends to zero as w— %, impos-
ing a high-frequency cutoff. For gamma-distributed delays,
IM ) (w)]*=(1+w?/ u?)™, giving a cutoff w,,=\In2/c when
>0, and w,=1/0 when 7=0¢. For Gaussian-distributed
delays with 7>, M y(w)P=e=""" giving a cutoff w,,
=\In2/0 as well. Thus the width of the delay distribution
constrains the frequencies transmitted to satisfy w=<w,,

PHYSICAL REVIEW E 78, 051901 (2008)

cortex

reticular
nucleus

relay
nuclei

FIG. 1. Schematic connectivities between neuronal populations
in the model. Cortical populations (excitatory a=e, inhibitory a=i)
and thalamic populations (relay a=s, reticular a=r) are shown, with
arrows labeled ab denoting where the fields ¢, project, with con-
nection strength v, for input to population a from population b (see
text for details). Input from the brainstem enters the system in ¢,,.

=1/0, implying that a narrow distribution is needed to pass
high frequencies. The narrower the distribution is, the higher
is the upper frequency bound below which signals will arrive
in phase.

Note that M, (w) is also the characteristic function of
M (1) [23]. Expanding M ,,(w) about w=0 gives

iw)k
) . (12)

Mab(w) = 2

k=0 k!

where u, is the kth moment of M (1), with u)=1. Thus the
agreement at low frequencies between the dynamics result-
ing from two distributions improves with increasing number
of moments equal between them. We use this fact in Sec. III.

B. Incorporating distributed delays into the corticothalamic
model

Here we incorporate distributed delays into the specific
corticothalamic model of Refs. [8—16], deriving the power
spectrum for general thalamocortical and corticothalamic de-
lay distributions. The model is outlined briefly here, full de-
tails having been presented elsewhere [8—11,13]. The neu-
ronal populations modeled are the excitatory (e) and
inhibitory (i) cortical neurons, and the specific relay (s) and
reticular nucleus (r) of the thalamus, with external input
from the brainstem and elsewhere (n) driving the system
through s. A schematic of the system is shown in Fig. 1.

The delayed terms in the corticothalamic model appear
only in the equations for the cell body potential V,
[8—11,13], which are now

Va(rat) = Z Vab(r’t)’ (13)
b

Dab(t)vab(r’t) = ah{r/fab(r’t)’ (14)
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1 & 1 1\d
D,,(1) = —2+(—+—)—+1, (15)
aabﬂah dt ) Bab dt

where we have replaced ¢,(r,7—7,;,) with #,,(r,t) given by
Eq. (1) (with spatial dependence included). Subpotential
V,»(r, ) is the contribution to the mean cell body potential of
population a from neurons in population b. Connection
strength v,,=N_,s,,, where N, is the mean number of syn-
apses on neurons of type a from neurons of type b, and s, is
the strength of response to a unit input from neurons of type
b. The differential operator D,,() models the synaptoden-
dritic response of the cell body potential, where «,, and B,
are the inverse decay and rise times of the soma response to
input b, respectively. For the model in Fig. 1, the only non-
zero 7, are the thalamocortical delays 7,,=7;, and the corti-
cothalamic delays 7,,=7,,. We retain this connectivity here,
with the only M ,,(w) # 1 being M, ,=M;; and M ,,=M,,. In-
tracortical propagation obeys a damped wave equation to a
good approximation [1,2,4,8—11,13], giving rise to distance-
dependent delays within the cortex, as distinct from the
propagation between structures that is our focus. Owing to
the short range of cortical inhibitory axons, and the relative
smallness of the thalamus, we neglect the wave propagation
within these populations [9,11,13].

The power spectrum P(w) can be calculated for any delay
distribution M (), without the delay kernel necessarily al-
lowing a differential form. If M, (w) can be obtained in
closed form, then so too can P(w), and in any case P(w) can
be obtained much more efficiently numerically via the trans-
fer function than by solving the full system of differential
equations. Using Eq. (2) and the other model equations (see
Ref. [13] for details), we obtain P(w) for fluctuations about a
fixed point, yielding

_ (¢

4
4ar,

2

GesnLesLsnM es Arng

(] - GeiLei)(] - G‘vrsLsrLrs)

P(w)

>

(16)

Im ¢°

N2
1
qzrﬁz <1 - 2) - —|:GeeLee
Ye 1- GeiLei
(GEXCLESLSE + GCSV(:‘LEXLSI‘LI‘E)M(’,SMXG
+
1- GsrstrLrs
where Ly,=(1-iw/ay,) (1-io/B,)"", gain Gu=p,Va
and sigmoid slope p,=S'(V,) is evaluated at the steady state.

We define Gese:GesGse’ Gexre:GesGerre’ Gsrs:Gerrx’ and
G,,=G,,G,, for convenience. Note that the dispersion rela-

}, (17)

0
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TABLE 1. Model parameters for the eyes-closed state, from
[14], with the parameter a from [16]. CT=corticothalamic, TC
=thalamocortical.

Quantity  Value Unit Description

Ve 140 57! Intracortical temporal damping rate

1/« 13 ms Decay time of cell body potential

1/B 3.5 ms Rise time of cell body potential

to 84 ms CT loop propagation time

a 0.25 TC fraction of total loop delay

G, 5.8 Excitatory intracortical gain

G, =75 Inhibitory intracortical gain

Gose 54 Gain for CT loop via relay nuclei

Gosre -33 Gain for CT loop via reticular nucleus
and relay nuclei

Gy, -0.5 Gain for intrathalamic loop

tion for waves with wave number k=0 is given by ¢*(w)
=0; for more details, see [8,9,11]. Spectra and stability are
linked by the fact that weak positive damping gives a strong
spectral peak, and in the limit of zero damping the peak is
infinite, while negative damping corresponds to instability.
As in previous work [9,11,13,15], we set a,,=a and By,
= for all ab, absorbing the effects of the many neurotrans-
mitters into single effective rise and decay rates. Together
with the parameters determining M,, and M,,, the power
spectrum is described by nine parameters: «, B, V,, G,., G.;,
Geser Gogres Gy, and normalization Po=(¢2)G,,,/4mr3g*(0).
For single discrete delays 7,,=at, and 7,=(1-a)t;, 0<a
<1 [16], P(w) depends on just one extra parameter, the total
corticothalamic loop delay 7,. Physiologically constrained
parameters for the eyes-closed state are given in Table 1.
Immediately from Eq. (16) we see that P(w) is propor-
tional to |M,,(w)|?, but not to |M,(w)|?. This is because the
drive ¢, into ¢, must propagate along connection es to reach
the cortex; corticothalamic delays along connections se and
re enter only via the M, M, term in Eq. (17). Thus the
power spectrum is acutely sensitive to the width of the
thalamocortical delay distribution, with strong damping for
w=1/0,, due to the |M,(w)|*> term in Eq. (16). For high
power in the alpha band relative to lower frequencies, this
cutoff must be above ~10 Hz, which requires ,,=<16 ms.

III. RESULTS

We show the effects of distributed delays on the model
power spectrum in Sec. III A, determine when it is appropri-

140 10 FIG. 2. Comparison of power

120 @ » ®) 0 o) spectra for discrete delay (thick

~ 100 2 ~100 line) and gamma-distributed de-
2 80 "‘ 5 » ) o lays with fixed relative widths
< 60 ‘\ E 10 \\ E —200 Ol Toy=04,/ T,=1/10  for 7,
=" 4 1 S R 300 +7,=60ms  (solid), 80 ms
20 }' L - | 400 (dashed), and 100 ms (dotted). (a)

0 b 107 ! - Delay distribution M, (f)=M,(t).

0 50 100 10° 10' 10° 200 (b) Power spectrum P(f). (c)

t (ms)

g*(w); g*(0) lies on the real axis.
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FIG. 3. Correction Afy=ty—(7,+ 7,) to mean corticothalamic
loop delay 7,,+ 7,, for a spectrum with discrete delay ¢#, to have the
same alpha frequency as for the distributed delays, for fixed
0,/ T,,=0,,/7,=1/10 (dashed), 1/5 (dash-dotted), and 1/4
(dotted).

ate to replace a distribution with one or more discrete delays
in Sec. III B, and determine when it is appropriate to replace
a distributed delay with an ODE representation in Sec. III C.

A. Spectra with distributed delays

First we show that the alpha peak frequency depends on
the sum of the mean delays 7,,,=7,,+ 7, in the same way as
it does on f in the discrete case, apart from a small, width-
dependent, correction. Figure 2 shows P(w) and ¢*(w) for
M () given by the gamma distribution (4) with 7,,=7,,
=30, 40, and 50 ms, and with fixed relative widths o,/ 7,
=0,/ 7,=1/10. The case of fixed widths is similar. Other
parameters are as given in Table I. Increasing 7, shifts the
alpha peak to lower frequencies. The discrete delay #y=7,,,
+At,, where At is a small correction, yields a power spec-
trum with the same alpha peak frequency as for the distribu-
tion. This quantity is plotted in Fig. 3 for relative widths
O,/ T,s=0/ T,=1/10, 1/5, and 1/4. For the parameters
shown here, the effective #, is greater than the mean loop
delay by less than 6 ms, and the correction increases with o;
for other parameters that give a sharper alpha peak, At is
negative, but still increases in magnitude with o. The behav-

10°

120

@ - A b)
100 _ )
— 2 RN
T 80 c \
O >, A
= 60 £ 10 Vo
s c oy
s 40 , = v
o \
20 710 \
i Mo _4 [y
o« = 10 -
0 50 100 10° 10' 10°
t(ms) f (Hz)
0
120 10
(d) (e)
100 _
~ 2
i 80 'c
< z -2 ‘o
— Qo
s 60 g 10 £
s 40 , S
201 741\ &
V2 N
/ M —4
o« 10
0 50 100 10° 10' 10°
t (ms) f (Hz)
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ior is similar when M ,,(r) and M () are given by the trun-
cated Gaussian distribution (6) with the same 7, and o, as
above, implying that it is the mean and width of the distri-
bution that are important for the power spectrum at the alpha
frequency, rather than the specific functional form M ().
This is in agreement with Eq. (12), in that the low-frequency
behavior will agree for different distributions if the low-order
moments agree, provided that differences in higher-order
terms in Eq. (12) are comparatively small (which is satisfied
for a wide range of distributions). This also implies that the
sign of At does not simply reflect the distribution’s skewness,
which is negligible for Eq. (6) when o<<7.

Next we show how the power spectrum (16) changes with
increasing thalamocortical delay width o, holding the dis-
crete corticothalamic delay constant (i.e., o,,=0). Figures
4(a)-4(c) show P(w) and ¢*(w) for M,(f) given by the
gamma distribution (4) with o,,=0, 4, 10, 20, and 40 ms.
Mean thalamocortical and corticothalamic delays 7,,=7,,
=40 ms are equal, giving corresponding n,,=(7,/0,)*
=0,100,16,4,1, and thus each nonzero delay width shown
admits an equivalent ODE of order n,.

Increasing o, reduces power at high frequencies relative
to the discrete delay case, due to the |M,|? term in Eq. (16),
as shown in the previous section. The cutoff moves to lower
frequencies with increasing width, eliminating the alpha
peak. As a secondary effect, the alpha peak power is reduced
even for narrow distributions whose cutoff is well beyond
the alpha band. This is due to the M,M,, term in Eq. (17).
We show the effect of this by increasing o, with discrete
thalamocortical delay fixed (i.e., o,,=0, eliminating the
damping due to |M,y|?). The resulting spectra are shown in
Figs. 4(d)-4(f). All spectra match the discrete case at both
low and high frequencies, while peaks in the alpha and beta
bands are made less sharp by increasing o,. This is due to
¢*(w) tracing out smaller loops in the complex plane than it
does in the discrete delay case, giving spectral peaks with
lower Q-factors. Thus the system becomes more stable with
increasing delay width, and less stable with decreasing delay
width. This has also been demonstrated in the general setting

FIG. 4. Comparison of power
spectra for discrete and gamma-
distributed delays with fixed
means 7,,=7,=40 ms, changing
thalamocortical (top row) and cor-
ticothalamic (bottom row) delay
widths. (a) Delay distribution
M ,i(t) for o,,=0 (thick vertical
line), o,,=4 ms (solid), o,
=10 ms (dashed), 0,,=20 ms
(dash-dotted), and o0,,=40 ms
(dotted). (b) Power spectrum P(f)
for each M,(r) in (a), with o,
=0 in all cases. (c) ¢*(w); ¢*(0)
lies on the real axis. (d) Same as
(a) but for varying width of
M, (1). (e) Power spectrum P(f)
for each M, (r) in (d), with o,
=0 in all cases. (f) Same as (c).

200

-100
-200

-300

—-400

200
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of coupled networks [7,18], and in a neural field model with
delayed feedback [5] (although the authors did not explicitly
state this). This result implies that when approximating a
distribution of delays with a single discrete delay, other pa-
rameters must change in order to preserve the peak alpha
power, or, in cases in which stability is lost, to retain even
qualitatively similar solutions.

We now allow 7,,# 7, by setting 7,,=ar,, and 7,,=(1
—a)7,s, where 0<a <1 is the thalamocortical fraction of the
loop delay. The partitioning of the corticothalamic loop be-
tween the es and se connections has no effect on the spec-
trum for single discrete delays [16], since |M,|*=1 in Eq.
(16) and M, M,,=1 in Eq. (17). This is not true in general
for distributed delays, but holds to a good approximation
under mild conditions. Since the total mean delay 7,,+ 7, is
independent of the partitioning, any change to the alpha peak
is due to the distribution widths. Holding relative widths
constant and varying a, the alpha peak power and frequency
only vary by at most a few percent provided that o,
<16 ms is satisfied. At high frequencies, |M ;> ~ @ " for
n,=(at,,/o,)?% so the slope of the spectrum will change
with a at fixed o,,, but this effect will typically be above the
range of frequencies of interest in EEG. Thus the power
spectrum depends only weakly on the delay partition, in
good agreement with the discrete delay case.

B. Approximating distributions with a discrete delays

In this section, we show that distributed thalamocortical
and corticothalamic delays are well approximated by discrete
delays for the frequencies of interest in typical EEG studies,
even for relatively wide distributions with widths 25% of
their means, provided that other model parameters are mod-
erately adjusted. Alternatively, adding a second discrete de-
lay enables a good approximation without any parameter ad-
justment.

We showed in Sec. IIT A that the alpha peak frequency for
a given delay distribution can be matched by using a discrete
delay near the distribution mean, holding other model param-
eters constant. However, in this case the alpha peak power is
significantly increased in moving to discrete delays, possibly
to the extent that stability is lost. To counter this, we mini-
mize the difference between the spectra by adjusting the
other model parameters. The restriction to frequencies w
<w,, discussed in Sec. II A still applies, however, because
the asymptotic slope of the spectrum is independent of all
parameters besides those determining M, (w).

The optimal adjusted parameters are those that give the
best least-squares fit of a spectrum with discrete delays to the
spectrum with distributed delays, with the fitted range re-
stricted to w<<w,,. For illustrative purposes we use the pa-
rameters of Table I and Gaussian-distributed delays given by
Eq. (6), fixing 7,,=7,=40 ms, and using relative widths
25% of these values. Figure 5 compares the spectra for
Gaussian-distributed delays to the corresponding single dis-
crete delay, with and without parameter adjustment. The ad-
justed parameters minimize X {log[P.(w)]-log[P(w)]}%,
and are obtained using a Levenberg-Marquardt algorithm
[24]. Using the log spectra gives roughly equal weight to
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P(f) (arb. units)

f (Hz)

FIG. 5. Comparison of power spectra for Gaussian-distributed
delays (solid), a single discrete delay (dotted), a single discrete
delay with parameter adjustment (dash-dotted), and a pair of dis-
crete delays (dashed). All cases have 7,,=7,=40 ms. The Gaussian
and pair of discrete delays both have o,,=0,,=10 ms. The vertical
dotted line denotes f=w,,/2m=1/270,.

spectral features in all frequency bands. Using a linear fit
would underemphasize key physics at both high and low
frequencies [9,13,14], the former due to there being rela-
tively low power there, the latter due to there being relatively
few points contributing to the fit. Parameters 7, a, 3, v,, Gee»
G.i» Goser Gogres and Gy, are allowed to vary, and spectra are
normalized to have P(0)=1. Fits are restricted to 1 Hz <f
<1/(Q2mo,,). The fitted spectrum differs from the actual
spectrum by less than 2% over the fitted range. The bulk of
the parameter adjustment is in the temporal parameters ¢, «,
B, and v,, changing by —12%, —34%, +6%, and —23%, re-
spectively, while the gains are adjusted by at most 3%. Note
that the fitted ¢, is less than 7,,,, contrary to the result in Fig.
3, due to a and v, decreasing to fit the overall shape of the
spectrum, whereas Az, obtained earlier is the adjustment for
only the alpha peak frequency.

Instead of adjusting parameters, the approximation is also
improved by using a pair of discrete delays, the advantage
being that two discrete delays together can have the same
mean, width, and skewness as the Gaussian distribution. The
restriction to w= 1/ 0, is necessary here, to avoid the strong
damping discussed in Sec. I A. The dash-dotted curve in
Fig. 5 is the spectrum for two equally weighted delays (c,
=c,=1/2) at 7,=7,,—0,, and 7,=7,,+ 0, (and similarly for
the se connection). This distribution has the same mean,
width, and skewness as the Gaussian distribution above, i.e.,
the distributions agree to third order in Eq. (12). Note that for
w=1/0,,, the pair of delays is superior to a single delay
without parameter adjustment. The alpha peak power differs
by <3% while its position differs by <1%, without needing
to change any of the model parameters. Using three or more
discrete delays improves the agreement further, as each ad-
ditional delay enables matching of an additional two mo-
ments in Eq. (12), which also increases the upper limit on
frequency.

In summary, for f<1/(2mo,,), a discrete delay is a good
approximation to a distribution if other parameters are ad-
justed slightly. Alternatively, a pair of delays is also a good
approximation, and does not require changing other param-
eters. Additional discrete delays are needed to approximate
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spectra at higher frequencies. Parameter adjustment at differ-
ent levels of modeling detail is consistent with the param-
eters in a mean-field model taking effective values averaging
over the underlying physiology. Experimental values are
themselves estimates of the true values, which are not known
precisely anyway. Using a more realistic representation of
the delays will likely yield better estimates of other param-
eters at the cost of more complexity.

C. Approximating distributions with ODEs

In this section, we show how narrow a distribution can be
for it to still be approximated by a low-order ODE. The
motivation for this is that gamma-distributed delays with in-
teger n,, allow an equivalent ODE representation, which, if
of sufficiently low order, is more easily integrated than the
convolution in Eq. (1) and has fewer storage requirements
than if the distribution is approximated by a discrete delay,
giving a DDE.

The question of whether an arbitrary distribution can be
approximated by an ODE amounts to whether its transfer
function is approximately of the form M ,,(w)=R(iw), where
R(iw) is a rational function of iw. This is satisfied for any
distribution that is well approximated by a gamma distribu-
tion of order n, where n is an integer. Since this wide class of
distributions captures the main features of unimodal distribu-
tions with non-negative skewness, and since the model
power spectrum at low frequencies is most sensitive to broad
features of M, () such as mean and width, an ODE approxi-
mation is sound if M ,;(¢) is well approximated by a gamma
distribution. The problem then reduces to whether the order
of the corresponding ODE is sufficiently low to be useful.

The order n,,=(7,,/0,,)> grows rapidly with decreasing
relative width, such that even for a relatively wide distribu-
tion with 25% relative width, the equivalent ODE is six-
teenth order. If ;™ is the maximum order ODE desired, the
distribution can be no wider than o,,=7,/ \J’w. For
thalamocortical delays, this maximlﬂ width imposes a
maximum frequency cutoff at w,=vnp, /7,. Thus a low-
order ODE governing the thalamocortical delay will only
yield sharp spectral peaks if o,, (and thus 7,,) is small.

IV. SUMMARY AND DISCUSSION

In this paper, we have incorporated distributed delays into
a mean-field corticothalamic model, and shown under what
conditions a distribution can be replaced by one or more
discrete delays, or by an equivalent ODE.

The main results are as follows. (a) A distribution of de-
lays acts as a linear filter, and the distribution width o con-
strains the frequencies transmitted to satisfy w=w,=1/0.
Signals are heavily damped beyond this frequency. (b) Due
to this damping, the model EEG power spectrum is sensitive
to the width of the thalamocortical delay distribution. This
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asymmetry between the thalamocortical and corticothalamic
pathways is because external drives must travel along the
thalamocortical pathway to reach the cortex. (c) The alpha
peak frequency depends on the sum of the mean thalamocor-
tical and corticothalamic delays in the same way as it does
on t, in the discrete case, apart from a small, width-
dependent, correction. (d) A discrete delay is a good approxi-
mation to a distribution of delays if the other model param-
eters are adjusted slightly to compensate for taking an
effective value. (e) Two discrete delays whose sum has the
same mean, variance, and skewness as the distribution ap-
proximate the distribution without needing parameter adjust-
ment. (f) Delay distributions with large fractional widths are
well approximated by low-order ODEs.

The sensitivity of the power spectrum to the width of the
thalamocortical delay distribution imposes a frequency cutoff
at w=1/0,,. This implies that a narrow distribution is needed
for the thalamocortical pathway to prevent strong damping
of the power spectrum at high frequencies. A narrow
thalamocortical delay distribution has indeed been measured
in the mouse [17]. The human delay distribution can be no
wider than ~16 ms to allow appreciable power in the alpha
band relative to lower frequencies. Since the thalamocortical
delay is likely to be a factor of 3 or more shorter than the
corticothalamic delay [16], if 7,,=~20 ms even a relatively
wide fractional width of 25% is comfortably within this
range.

Our results suggest that attentional focus could be aided
by selecting a pathway with a narrower delay distribution,
since this carries the system nearer to marginal stability,
thereby increasing the strength of the response to stimuli.
This is in agreement with a study on auditory evoked poten-
tials [25], where the thalamocortical loop delay was found to
be slightly but robustly shorter in response to target stimuli
than background stimuli: if this corresponds to selection of a
fast subset of the full distribution, the spread in delays is
decreased. Furthermore, evoked potentials themselves are
generated in the thalamocortical loop, with the peaks and
troughs in the waveforms strongly dependent on the under-
lying conduction delays. How these waveforms change un-
der distributed delays is a direction for future work.

Alternatively, involvement of a wider range of delays un-
der varied sensory input acts to damp the system, insulating
it from instability. This implies a possible route to seizure in
the form of over-representation of a group of fibers with
narrowly distributed delays. Such a mechanism is distinct
from notions of excitation outweighing inhibition [15], rely-
ing instead on increased synchrony due to neuronal inputs
arriving over narrower time windows.
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